Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Embedding the Elementary Ontology of Stanisław Leśniewski into the Monadic Second-Order Calculus of Predicates

V. A. Smirnov
Studia Logica: An International Journal for Symbolic Logic
Vol. 42, No. 2/3, Proceedings of the Finnish-Polish-Soviet Logic Conference (1983), pp. 197-207
Published by: Springer
Stable URL: http://www.jstor.org/stable/20015109
Page Count: 11
  • Download ($43.95)
  • Cite this Item
Embedding the Elementary Ontology of Stanisław Leśniewski into the Monadic Second-Order Calculus of Predicates
Preview not available

Abstract

Let EO be the elementary ontology of Leśniewski formalized as in Iwanuś [1], and let LS be the monadic second-order calculus of predicates. In this paper we give an example of a recursive function φ, defined on the formulas of the language of EO with values in the set of formulas of the language of LS, such that $\vdash _{EO}A$ iff $\vdash _{LS}\phi $ (A) for each formula A.

Page Thumbnails

  • Thumbnail: Page 
[197]
    [197]
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207