Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Lines on the Fermat Quintic Threefold and the Infinitesimal Generalized Hodge Conjecture

Alberto Albano and Sheldon Katz
Transactions of the American Mathematical Society
Vol. 324, No. 1 (Mar., 1991), pp. 353-368
DOI: 10.2307/2001512
Stable URL: http://www.jstor.org/stable/2001512
Page Count: 16
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Lines on the Fermat Quintic Threefold and the Infinitesimal Generalized Hodge Conjecture
Preview not available

Abstract

We study the deformation theory of lines on the Fermat quintic threefold. We formulate an infinitesimal version of the generalized Hodge conjecture, and use our analysis of lines to prove it in a special case.

Page Thumbnails

  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368