Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

On Structural Completeness of Implicational Logics

Piotr Wojtylak
Studia Logica: An International Journal for Symbolic Logic
Vol. 50, No. 2 (1991), pp. 275-297
Published by: Springer
Stable URL: http://www.jstor.org/stable/20015579
Page Count: 23
  • Download ($43.95)
  • Cite this Item
On Structural Completeness of Implicational Logics
Preview not available

Abstract

We consider the notion of structural completeness with respect to arbitrary (finitary and/or infinitary) inferential rules. Our main task is to characterize structurally complete intermediate logics. We prove that the structurally complete extension of any pure implicational intermediate logic C can be given as an extension of C with a certain family of schematically defined infinitary rules; the same rules are used for each C. The cardinality of the family is continuum and, in the case of (the pure implicational fragment of) intuitionistic logic, the family cannot be reduced to a countable one. It means that the structurally complete extension of the intuitionistic logic is not countably axiomatizable by schematic rules.

Page Thumbnails

  • Thumbnail: Page 
[275]
    [275]
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297