If you need an accessible version of this item please contact JSTOR User Support

Sentential Constants in Systems near R

John Slaney
Studia Logica: An International Journal for Symbolic Logic
Vol. 52, No. 3 (Aug., 1993), pp. 443-455
Published by: Springer
Stable URL: http://www.jstor.org/stable/20015685
Page Count: 13
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Sentential Constants in Systems near R
Preview not available

Abstract

An Ackermann constant is a formula of sentential logic built up from the sentential constant t by closing under connectives. It is known that there are only finitely many non-equivalent Ackermann constants in the relevant logic R. In this paper it is shown that the most natural systems close to R but weaker than it-in particular the non-distributive system LR and the modalised system NR-allow infinitely many Ackermann constants to be distinguished. The argument in each case proceeds by construction of an algebraic model, infinite in the case of LR and of arbitrary finite size in the case of NR. The search for these models was aided by the computer program MaGIC (Matrix Generator for Implication Connectives) developed by the author at the Australian National University.

Page Thumbnails

  • Thumbnail: Page 
[443]
    [443]
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455