Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Abstract Variable-Binding Calculus

Don Pigozzi, Antonino Salibra and Antonio Salibra
Studia Logica: An International Journal for Symbolic Logic
Vol. 55, No. 1 (Jul., 1995), pp. 129-179
Published by: Springer
Stable URL: http://www.jstor.org/stable/20015811
Page Count: 51
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Abstract Variable-Binding Calculus
Preview not available

Abstract

The abstract variable binding calculus (VB-calculus) provides a formal framework encompassing such diverse variable-binding phenomena as lambda abstraction, Riemann integration, existential and universal quantification (in both classical and nonclassical logic), and various notions of generalized quantification that have been studied in abstract model theory. All axioms of the VB-calculus are in the form of equations, but like the lambda calculus it is not a true equational theory since substitution of terms for variables is restricted. A similar problem with the standard formalism of the first-order predicate logic led to the development of the theory of cylindric and polyadic Boolean algebras. We take the same course here and introduce the variety of polyadic VB-algebras as a pure equational form of the VB-calculus. In one of the main results of the paper we show that every locally finite polyadic VB-algebra of infinite dimension is isomorphic to a functional polyadic VB-algebra that is obtained from a model of the VB-calculus by a natural coordinatization process. This theorem is a generalization of the functional representation theorem for polyadic Boolean algebras given by P. Halmos. As an application of this theorem we present a strong completeness theorem for the VB-calculus. More precisely, we prove that, for every VB-theory T that is obtained by adjoining new equations to the axioms of the VB-calculus, there exists a model D such that $\vdash _{\text{T}}s=t$ iff $\vDash _{\text{D}}s=t$. This result specializes to a completeness theorem for a number of familiar systems that can be formalized as VB-calculi. For example, the lambda calculus, the classical first-order predicate calculus, the theory of the generalized quantifier exists uncountably many and a fragment of Riemann integration.

Page Thumbnails

  • Thumbnail: Page 
[129]
    [129]
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169
  • Thumbnail: Page 
170
    170
  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173
  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179