If you need an accessible version of this item please contact JSTOR User Support

Glivenko Type Theorems for Intuitionistic Modal Logics

Guram Bezhanishvili
Studia Logica: An International Journal for Symbolic Logic
Vol. 67, No. 1 (Feb., 2001), pp. 89-109
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016257
Page Count: 21
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Glivenko Type Theorems for Intuitionistic Modal Logics
Preview not available

Abstract

In this article we deal with Glivenko type theorems for intuitionistic modal logics over Prior's MIPC. We examine the problems which appear in proving Glivenko type theorems when passing from the intuitionistic propositional logic Int to MIPC. As a result we obtain two different versions of Glivenko's theorem for logics over MIPC. Since MIPC can be thought of as a one-variable fragment of the intuitionistic predicate logic Q-Int, one of the versions of Glivenko's theorem for logics over MIPC is closely related to that for intermediate predicate logics obtained by Umezawa [27] and Gabbay [15]. Another one is rather surprising.

Page Thumbnails

  • Thumbnail: Page 
[89]
    [89]
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109