Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Gentzen-Style Axiomatizations for Some Conservative Extensions of Basic Propositional Logic

Mojtaba Aghaei and Mohammad Ardeshir
Studia Logica: An International Journal for Symbolic Logic
Vol. 68, No. 2 (Jul., 2001), pp. 263-285
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016309
Page Count: 23
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Gentzen-Style Axiomatizations for Some Conservative Extensions of Basic Propositional Logic
Preview not available

Abstract

We introduce two Gentzen-style sequent calculus axiomatizations for conservative extensions of basic propositional logic. Our first axiomatization is an ipmrovement of [1], in the sense that it has a kind of the subformula property and is a slight modification of [6]. In this system the cut rule is eliminated. The second axiomatization is a classical conservative extension of basic propositional logic. Using these axiomatizations, we prove interpolation theorems for basic propositional logic.

Page Thumbnails

  • Thumbnail: Page 
[263]
    [263]
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285