Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Finding Missing Proofs with Automated Reasoning

Branden Fitelson and Larry Wos
Studia Logica: An International Journal for Symbolic Logic
Vol. 68, No. 3 (Aug., 2001), pp. 329-356
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016321
Page Count: 28
  • Download ($43.95)
  • Cite this Item
Finding Missing Proofs with Automated Reasoning
Preview not available

Abstract

This article features long-sought proofs with intriguing properties (such as the absence of double negation and the avoidance of lemmas that appeared to be indispensable), and it features the automated methods for finding them. The theorems of concern are taken from various areas of logic that include two-valued sentential (or propositional) calculus and infinite-valued sentential calculus. Many of the proofs (in effect) answer questions that had remained open for decades, questions focusing on axiomatic proofs. The approaches we take are of added interest in that all rely heavily on the use of a single program that offers logical reasoning, William McCune's automated reasoning program OTTER. The nature of the successes and approaches suggests that this program offers researchers a valuable automated assistant. This article has three main components. First, in view of the interdisciplinary nature of the audience, we discuss the means for using the program in question (OTTER), which flags, parameters, and lists have which effects, and how the proofs it finds are easily read. Second, because of the variety of proofs that we have found and their significance, we discuss them in a manner that permits comparison with the literature. Among those proofs, we offer a proof shorter than that given by Meredith and Prior in their treatment of Łukasiewicz's shortest single axiom for the implicational fragment of two-valued sentential calculus, and we offer a proof for the Łukasiewicz 23-letter single axiom for the full calculus. Third, with the intent of producing a fruitful dialogue, we pose questions concerning the properties of proofs and, even more pressing, invite questions similar to those this article answers.

Page Thumbnails

  • Thumbnail: Page 
[329]
    [329]
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356