If you need an accessible version of this item please contact JSTOR User Support

An Overview of Tableau Algorithms for Description Logics

Franz Baader and Ulrike Sattler
Studia Logica: An International Journal for Symbolic Logic
Vol. 69, No. 1, Analytic Tableaux and Related Methods. Part 1: Modal Logics (Oct., 2001), pp. 5-40
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016336
Page Count: 36
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
An Overview of Tableau Algorithms for Description Logics
Preview not available

Abstract

Description logics are a family of knowledge representation formalisms that are descended from semantic networks and frames via the system Kl-one. During the last decade, it has been shown that the important reasoning problems (like subsumption and satisfiability) in a great variety of description logics can be decided using tableau-like algorithms. This is not very surprising since description logics have turned out to be closely related to propositional modal logics and logics of programs (such as propositional dynamic logic), for which tableau procedures have been quite successful. Nevertheless, due to different underlying intuitions and applications, most description logics differ significantly from run-of-the-mill modal and program logics. Consequently, the research on tableau algorithms in description logics led to new techniques and results, which are, however, also of interest for modal logicians. In this article, we will focus on three features that play an important rôle in description logics (number restrictions, terminological axioms, and role constructors), and show how they can be taken into account by tableau algorithms.

Page Thumbnails

  • Thumbnail: Page 
[5]
    [5]
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40