Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Martin's Axiom, Omitting Types, and Complete Representations in Algebraic Logic

Tarek Sayed Ahmed
Studia Logica: An International Journal for Symbolic Logic
Vol. 72, No. 2, Many-Dimensional Logical Systems (Nov., 2002), pp. 285-309
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016465
Page Count: 25
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Martin's Axiom, Omitting Types, and Complete Representations in Algebraic Logic
Preview not available

Abstract

We give a new characterization of the class of completely representable cylindric algebras of dimension 2 < n ≤ ω via special neat embeddings. We prove an independence result connecting cylindric algebra to Martin's axiom. Finally we apply our results to finite-variable first order logic showing that Henkin and Orey's omitting types theorem fails for $L_{n}$, the first order logic restricted to the first n variables when 2 < n < ω. $L_{n}$ has been recently (and quite extensively) studied as a many-dimensional modal logic.

Page Thumbnails

  • Thumbnail: Page 
[285]
    [285]
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309