Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Euclidean Hierarchy in Modal Logic

Johan van Benthem, Guram Bezhanishvili and Mai Gehrke
Studia Logica: An International Journal for Symbolic Logic
Vol. 75, No. 3 (Dec., 2003), pp. 327-344
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016563
Page Count: 18
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Euclidean Hierarchy in Modal Logic
Preview not available

Abstract

For a Euclidean space ${\Bbb R}^{n}$, let $L_{n}$ denote the modal logic of chequered subsets of ${\Bbb R}^{n}$. For every n ≥ 1, we characterize $L_{n}$ using the more familiar Kripke semantics thus implying that each $L_{n}$ is a tabular logic over the well-known modal system Grz of Grzegorczyk. We show that the logics $L_{n}$ form a decreasing chain converging to the logic $L_{\infty}$ of chequered subsets of ${\Bbb R}^{\infty}$. As a result, we obtain that $L_{\infty}$ is also a logic over Grz, and that $L_{\infty}$ has the finite model property. We conclude the paper by extending our results to the modal language enriched with the universal modality.

Page Thumbnails

  • Thumbnail: Page 
[327]
    [327]
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344