Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Euclidean Hierarchy in Modal Logic

Johan van Benthem, Guram Bezhanishvili and Mai Gehrke
Studia Logica: An International Journal for Symbolic Logic
Vol. 75, No. 3 (Dec., 2003), pp. 327-344
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016563
Page Count: 18
  • Download ($43.95)
  • Cite this Item
Euclidean Hierarchy in Modal Logic
Preview not available

Abstract

For a Euclidean space ${\Bbb R}^{n}$, let $L_{n}$ denote the modal logic of chequered subsets of ${\Bbb R}^{n}$. For every n ≥ 1, we characterize $L_{n}$ using the more familiar Kripke semantics thus implying that each $L_{n}$ is a tabular logic over the well-known modal system Grz of Grzegorczyk. We show that the logics $L_{n}$ form a decreasing chain converging to the logic $L_{\infty}$ of chequered subsets of ${\Bbb R}^{\infty}$. As a result, we obtain that $L_{\infty}$ is also a logic over Grz, and that $L_{\infty}$ has the finite model property. We conclude the paper by extending our results to the modal language enriched with the universal modality.

Page Thumbnails

  • Thumbnail: Page 
[327]
    [327]
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344