Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Light Affine Set Theory: A Naive Set Theory of Polynomial Time

Kazushige Terui
Studia Logica: An International Journal for Symbolic Logic
Vol. 77, No. 1 (Jun., 2004), pp. 9-40
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016605
Page Count: 32
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Light Affine Set Theory: A Naive Set Theory of Polynomial Time
Preview not available

Abstract

In [7], a naive set theory is introduced based on a polynomial time logical system, Light Linear Logic (LLL). Although it is reasonably claimed that the set theory inherits the intrinsically polytime character from the underlying logic LLL, the discussion there is largely informal, and a formal justification of the claim is not provided sufficiently. Moreover, the syntax is quite complicated in that it is based on a non-traditional hybrid sequent calculus which is required for formulating LLL. In this paper, we consider a naive set theory based on Intuitionistic Light Affine Logic (ILAL), a simplification of LLL introduced by [1], and call it Light Affine Set Theory (LAST). The simplicity of LAST allows us to rigorously verify its polytime character. In particular, we prove that a function over $\{0,1\}^{\ast}$ is computable in polynomial time if and only if it is provably total in LAST.

Page Thumbnails

  • Thumbnail: Page 
[9]
    [9]
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40