Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

An Exactification of the Monoid of Primitive Recursive Functions

Joachim Lambek and Philip Scott
Studia Logica: An International Journal for Symbolic Logic
Vol. 81, No. 1 (Oct., 2005), pp. 1-18
Published by: Springer
Stable URL: http://www.jstor.org/stable/20016728
Page Count: 18
  • Download ($43.95)
  • Cite this Item
An Exactification of the Monoid of Primitive Recursive Functions
Preview not available

Abstract

We study the monoid of primitive recursive functions and investigate a one-step construction of a kind of exact completion, which resembles that of the familiar category of modest sets, except that the partial equivalence relations which serve as objects are recursively enumerable. As usual, these constructions involve the splitting of symmetric idempotents.

Page Thumbnails

  • Thumbnail: Page 
[1]
    [1]
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18