Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Resonance and the Second BVP

Victor L. Shapiro
Transactions of the American Mathematical Society
Vol. 325, No. 1 (May, 1991), pp. 363-387
DOI: 10.2307/2001675
Stable URL: http://www.jstor.org/stable/2001675
Page Count: 25
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Resonance and the Second BVP
Preview not available

Abstract

Let $\Omega \subset \mathbb{R}^N$ be a bounded open connected set with the cone property, and let $1 < p < \infty$. Also, let $Qu$ be the $2m$th order quasilinear differential operator in generalized divergence form: $$Qu = \sum_{1\leq|\alpha|\leq m} (-1)^{|\alpha|} D^\alpha A_\alpha(x, \xi_m(u)),$$ where for $u \in W^{m,p}, \xi_m(u) = \{D^\alpha u:|\alpha| \leq m\}$. (For $m = 1, Qu = - \sum_{i=1}^N A_i(x, u, Du)$.) Under four assumptions on $A_\alpha$--Caratheodory, growth, monotonicity for $|\alpha| = m$, and ellipticity--results at resonance are established for the equation $Qu = G + f(x, u)$, where $G \in \lbrack W^{m,p}(\Omega) \rbrack^\ast$ and $f(x, u)$ satisfies a one-sided condition (plus others). For the case $m = 1$, these results are tantamount to generalized solutions of the second BVP.

Page Thumbnails

  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387