Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Landscape-Scale Patterns of Shrub-Species Abundance in California Chaparral: The Role of Topographically Mediated Resource Gradients

Ross K. Meentemeyer, Aaron Moody and Janet Franklin
Plant Ecology
Vol. 156, No. 1, Remote Sensing and Spatial Analysis Applications in Vegetation and Landscape Ecology (Sep., 2001), pp. 19-41
Published by: Springer
Stable URL: http://www.jstor.org/stable/20051133
Page Count: 23
  • Download ($43.95)
  • Cite this Item
Landscape-Scale Patterns of Shrub-Species Abundance in California Chaparral: The Role of Topographically Mediated Resource Gradients
Preview not available

Abstract

We examine the degree to which landscape-scale spatial patterns of shrub-species abundance in California chaparral reflect topographically mediated environmental conditions, and evaluate whether these patterns correspond to known ecophysiological plant processes. Regression tree models are developed to predict spatial patterns in the abundance of 12 chaparral shrub and tree species in three watersheds of the Santa Ynez Mountains, California. The species response models are driven by five variables: average annual soil moisture, seasonal variability in soil moisture, average annual photosynthetically active radiation, maximum air temperature over the dry season (May-October), and substrate rockiness. The energy and moisture variables are derived by integrating high resolution (10 m) digital terrain data and daily climate observations with a process-based hydro-ecological model (RHESSys). Field-sampled data on species abundance are spatially integrated with the distributed environmental variables for developing and evaluating the species response models. The species considered are differentially distributed along topographically-mediated environmental gradients in ways that are consistent with known ecophysiological processes. Spatial patterns in shrub abundance are most strongly associated with annual soil moisture and solar radiation. Substrate rockiness is also closely associated with the establishment of certain species, such as Adenostoma fasciculatum and Arctostaphylos glauca. In general, species that depend on fire for seedling recruitment (e.g., Ceanothous megacarpus) occur at high abundance in xeric environments, whereas species that do not depend on fire (e.g., Heteromeles arbutifolia) occur at higher abundance in mesic environments. Model performance varies between species and is related to life history strategies for regeneration. The scale of our analysis may be less effective at capturing the processes that underlie the establishment of species that do not depend on fire for recruitment. Analysis of predication errors in relation to environmental conditions and the abundance of potentially competing species suggest factors not explicitly considered in the species response models.

Page Thumbnails

  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41