Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Factorization Tables for $x^n - 1$ Over $\mathrm{GF}(q)$

Jacob T. B. Beard, Jr. and Karen I. West
Mathematics of Computation
Vol. 28, No. 128 (Oct., 1974), pp. 1167-1168
DOI: 10.2307/2005376
Stable URL: http://www.jstor.org/stable/2005376
Page Count: 18
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Factorization Tables for $x^n - 1$ Over $\mathrm{GF}(q)$
Preview not available

Abstract

These tables give the complete factorization of $x^n - 1$ over $\mathrm{GF}(q), q = p^a, 2 \leqslant n \leqslant d$ as below, together with the Euler $\Phi$-function of $x^n - 1$ whenever $\Phi(x^n - 1) < 10^8$. \begin{align*} q &= 2; d = 32\quad q &= 3; d = 27\qquad q &= 11; d = 15\\ q &= 2^2; d = 16\quad q &= 3^2; d = 15\qquad q = 13; d = 15\\ q &= 2^3; d = 16\quad q &= 5; d = 25, n \neq 23^\dagger\qquad q = 17; d = 15\\ q &= 2^4; d = 16\quad q &= 5^2; d = 10\qquad q &= 19; d = 12\\ q &= 2^5; d = 12\quad q &= 7; d = 15\qquad q &= 23; d = 10\end{align*}

Page Thumbnails

  • Thumbnail: Page 
1167
    1167
  • Thumbnail: Page 
1168
    1168
  • Thumbnail: Page 
s23
    s23
  • Thumbnail: Page 
s24
    s24
  • Thumbnail: Page 
s25
    s25
  • Thumbnail: Page 
s28
    s28
  • Thumbnail: Page 
s29
    s29
  • Thumbnail: Page 
s30
    s30
  • Thumbnail: Page 
s31
    s31
  • Thumbnail: Page 
s32
    s32
  • Thumbnail: Page 
s33
    s33
  • Thumbnail: Page 
s34
    s34
  • Thumbnail: Page 
s35
    s35
  • Thumbnail: Page 
s36
    s36
  • Thumbnail: Page 
s37
    s37
  • Thumbnail: Page 
s38
    s38
  • Thumbnail: Page 
s39
    s39
  • Thumbnail: Page 
s40
    s40