Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric $M$-Matrix

J. A. Meijerink and H. A. van der Vorst
Mathematics of Computation
Vol. 31, No. 137 (Jan., 1977), pp. 148-162
DOI: 10.2307/2005786
Stable URL: http://www.jstor.org/stable/2005786
Page Count: 15
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric $M$-Matrix
Preview not available

Abstract

A particular class of regular splittings of not necessarily symmetric $M$-matrices is proposed. If the matrix is symmetric, this splitting is combined with the conjugate-gradient method to provide a fast iterative solution algorithm. Comparisons have been made with other well-known methods. In all test problems the new combination was faster than the other methods.

Page Thumbnails

  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162