Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Some Definite Integrals of the Product of Two Bessel Functions of the Second Kind: (Order Zero)

M. L. Glasser
Mathematics of Computation
Vol. 28, No. 126 (Apr., 1974), pp. 613-615
DOI: 10.2307/2005937
Stable URL: http://www.jstor.org/stable/2005937
Page Count: 7
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Some Definite Integrals of the Product of Two Bessel Functions of the Second Kind: (Order Zero)
Preview not available

Abstract

A new integral representation is derived for the expression $J_0(z)J_0(Z) + Y_0(z) \cdot Y_0(Z)$ and used to evaluated a number of integrals containing $Y_0(ax)Y_0(bx)$. A supplementary table of integrals involving the function $K_0(x)$ in the integrand appears in the microfiche section of this issue.

Page Thumbnails

  • Thumbnail: Page 
613
    613
  • Thumbnail: Page 
614
    614
  • Thumbnail: Page 
615
    615
  • Thumbnail: Page 
s33
    s33
  • Thumbnail: Page 
s34
    s34
  • Thumbnail: Page 
s35
    s35
  • Thumbnail: Page 
s36
    s36