Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

An Approximation for $\int^\infty_\nu e^{-t^2/2} t^p dt, x > 0, p$ Real

A. R. DiDonato
Mathematics of Computation
Vol. 32, No. 141 (Jan., 1978), pp. 271-275
DOI: 10.2307/2006275
Stable URL: http://www.jstor.org/stable/2006275
Page Count: 5
  • Read Online (Free)
  • Download ($34.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
An Approximation for $\int^\infty_\nu e^{-t^2/2} t^p dt, x > 0, p$ Real
Preview not available

Abstract

A new approximation is given for $\int^\infty_x e^{-t^2/2}t^p dt, x > 0, p$ real, which extends an earlier approximation of Boyd's for $p = 0$.

Page Thumbnails

  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275