Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effects of Medium Components and Light on Callus Induction, Growth, and Frond Regeneration in Lemna gibba (Duckweed)

H. K. Moon and A. M. Stomp
In Vitro Cellular & Developmental Biology. Plant
Vol. 33, No. 1 (Jan. - Mar., 1997), pp. 20-25
Stable URL: http://www.jstor.org/stable/20064933
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effects of Medium Components and Light on Callus Induction, Growth, and Frond Regeneration in Lemna gibba (Duckweed)
Preview not available

Abstract

Basal media, plant growth regulator type and concentration, sucrose, and light were examined for their effects on duck-weed (Lemna gibba) frond proliferation, callus induction and growth, and frond regeneration. Murashinge and Skoog medium proved best for callus induction and growth, while Schenk and Hildebrandt medium proved best for frond proliferation. The ability of auxin to induce callus was associated with the relative strength of the four auxins tested, with 20 or 50 μM 2,4-dichlorophenoxyacetic acid giving the highest frequency (10%) of fronds producing cellus. Auxin combinations did not improve callus induction frequency. Auxin in combination with other plant growth regulators was needed for long-term callus growth; the two superior plant growth regulator combinations were 10 μM naphthaleneacetic acid, 10 μM gibberellic acid, and 2 μM benzyladenine with either 1 or 20 μM 2,4-dichlorophenoxyacetic acid. Three percent sucrose was best for callus induction and growth. Callus induction and growth required light. Callus that proliferated from each frond's meristematic zone contained a mixture of dedifferentiated and somewhat organized cell masses. Continual callus selection was required to produce mostly dedifferentiated, slow-growing callus cell lines. Frond regeneration occurred on Schenk and Hildebrandt medium without plant growth regulators but was promoted by 1 μM benzyladenine. Callus maintained its ability to regenerate fronds for at least 10 mo. Regenerated fronds showed a slower growth rate than normal fronds and a low percentage of abnormal morphologies that reverted to normal after one or two subcultures.

Page Thumbnails

  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25