Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

ARGONAUTE4 Is Required for Resistance to Pseudomonas Syringae in Arabidopsis

Astrid Agorio and Pablo Vera
The Plant Cell
Vol. 19, No. 11 (Nov., 2007), pp. 3778-3790
Stable URL: http://www.jstor.org/stable/20077232
Page Count: 13
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
ARGONAUTE4 Is Required for Resistance to Pseudomonas Syringae in Arabidopsis
Preview not available

Abstract

Here, we report the characterization of the Arabidopsis thaliana ocp11 (for overexpressor of cationic peroxidase11) mutant, in which a β-glucuronidase reporter gene under the control of the H₂O₂-responsive Ep5C promoter is constitutively expressed. ocp11 plants show enhanced disease susceptibility to the virulent bacterium Pseudomonas syringae pv tomato DC3000 (P.s.t. DC3000) and also to the avirulent P.s.t. DC3000 carrying the effector avrRpm1 gene. In addition, ocp11 plants are also compromised in resistance to the nonhost pathogen P. syringae pv tabaci. Genetic and molecular analyses reveal that ocp11 plants are not affected in salicylic acid perception. We cloned OCP11 and show that it encodes ARGONAUTE4 (AGO4), a component of the pathway that mediates the transcriptional gene silencing associated with small interfering RNAs that direct DNA methylation at specific loci, a phenomenon known as RNA-directed DNA methylation (RdDM). Thus, we renamed our ocp11 mutant ago4-2, as it represents a different allele to the previously characterized recessive ago4-1. Both mutants decrease the extent of DNA cytosine methylation at CpNpG and CpHpH (asymmetric) positions present at different DNA loci and show commonalities in all of the molecular and phenotypic aspects that we have considered. Interestingly, we show that AGO4 works independently of other components of the RdDM pathway in mediating resistance to P.s.t. DC3000, and loss of function in other components of the pathway operating upstream of AGO4, such as RDR2 and DCL3, or operating downstream, such as DRD1, CMT3, DRM1, and DRM2, does not compromise resistance to this pathogen.

Page Thumbnails

  • Thumbnail: Page 
[3778]
    [3778]
  • Thumbnail: Page 
3779
    3779
  • Thumbnail: Page 
3780
    3780
  • Thumbnail: Page 
3781
    3781
  • Thumbnail: Page 
3782
    3782
  • Thumbnail: Page 
3783
    3783
  • Thumbnail: Page 
3784
    3784
  • Thumbnail: Page 
3785
    3785
  • Thumbnail: Page 
3786
    3786
  • Thumbnail: Page 
3787
    3787
  • Thumbnail: Page 
3788
    3788
  • Thumbnail: Page 
3789
    3789
  • Thumbnail: Page 
3790
    3790