Access

You are not currently logged in.

Access JSTOR through your library or other institution:

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Recurrence Relations for Hypergeometric Functions of Unit Argument

Stanisław Lewanowicz
Mathematics of Computation
Vol. 45, No. 172 (Oct., 1985), pp. 521-535
DOI: 10.2307/2008142
Stable URL: http://www.jstor.org/stable/2008142
Page Count: 15

Select the topics that are inaccurate.

Cancel
Preview not available

Abstract

We show that the generalized hypergeometric function \begin{equation*}P_n:=_{p + 3}F_{p + 2}\Bigg(\overset{-n, n + \lambda, a_p, 1}{b_{p + 2}} \Bigg| 1\Bigg)\quad (n \geq 0)\end{equation*} satisfies a nonhomogeneous recurrence relation of order $p + \sigma$, where $\sigma = 0$ when $_{p + 3}F_{p + 2}(1)$ is balanced, and $\sigma = 1$ otherwise. Also, for \begin{equation*}U_n:= \frac{(c_{q + 1})_n}{(d_q)_n(n + \lambda)_n}_{q + 2}F_{q + 1}\Bigg(\overset{n + c_{q + 2}}{n + d_q, 2n + \lambda + 1}\Bigg| 1\Bigg)\quad (n \geq 0)\end{equation*} a homogeneous recurrence relation of order $q + 1$ is given.

• 521
• 522
• 523
• 524
• 525
• 526
• 527
• 528
• 529
• 530
• 531
• 532
• 533
• 534
• 535