Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Finite Element Formulation of the General Magnetostatic Problem in the Space of Solenoidal Vector Functions

Mark J. Friedman
Mathematics of Computation
Vol. 43, No. 168 (Oct., 1984), pp. 415-431
DOI: 10.2307/2008284
Stable URL: http://www.jstor.org/stable/2008284
Page Count: 17
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Finite Element Formulation of the General Magnetostatic Problem in the Space of Solenoidal Vector Functions
Preview not available

Abstract

A new finite element method for the solution of the general magnetostatic problem is formulated and analyzed. The space of trial functions consists of solenoidal piecewise polynomial vector functions. We start with an integral formulation, in terms of the flux density, in the domain occupied by magnetic material. Using the properties [10] of the spectrum of the relevant singular integral operator we derive a weak formulation involving an integral operator on the boundary only. Thus the resulting finite element matrix consists of a sparse part corresponding to the interior of the iron domain and a full part corresponding to the boundary. Using the method of monotone operators, existence and uniqueness of the solution of the weak formulation as well as its discretization are proven. Error estimates are derived with the special emphasis on the case when magnetic permeability is large. Finally, solution of the problem by successive iteration is analyzed.

Page Thumbnails

  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431