If you need an accessible version of this item please contact JSTOR User Support

An Objective Theory of Statistical Testing

Deborah G. Mayo
Synthese
Vol. 57, No. 3, Rationality and Objectivity: Philosophical and Psychological Conceptions, Part II (Dec., 1983), pp. 297-340
Published by: Springer
Stable URL: http://www.jstor.org/stable/20115944
Page Count: 44
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
An Objective Theory of Statistical Testing
Preview not available

Abstract

Theories of statistical testing may be seen as attempts to provide systematic means for evaluating scientific conjectures on the basis of incomplete or inaccurate observational data. The Neyman-Pearson Theory of Testing (NPT) has purported to provide an objective means for testing statistical hypotheses corresponding to scientific claims. Despite their widespread use in science, methods of NPT have themselves been accused of failing to be objective; and the purported objectivity of scientific claims based upon NPT has been called into question. The purpose of this paper is first to clarify this question by examining the conceptions of (I) the function served by NPT in science, and (II) the requirements of an objective theory of statistics upon which attacks on NPT's objectivity are based. Our grounds for rejecting these conceptions suggest altered conceptions of (I) and (II) that might avoid such attacks. Second, we propose a reformulation of NPT, denoted by NPT*, based on these altered conceptions, and argue that it provides an objective theory of statistics. The crux of our argument is that by being able to objectively control error frequencies NPT* is able to objectively evaluate what has or has not been learned from the result of a statistical test.

Page Thumbnails

  • Thumbnail: Page 
[297]
    [297]
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340