Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Conceptual Realism versus Quine on Classes and Higher-Order Logic

Nino B. Cocchiarella
Synthese
Vol. 90, No. 3 (Mar., 1992), pp. 379-436
Published by: Springer
Stable URL: http://www.jstor.org/stable/20117006
Page Count: 58
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Conceptual Realism versus Quine on Classes and Higher-Order Logic
Preview not available

Abstract

The problematic features of Quine's 'set' theories NF and ML are a result of his replacing the higher-order predicate logic of type theory by a first-order logic of membership, and can be resolved by returning to a second-order logic of predication with nominalized predicates as abstract singular terms. We adopt a modified Fregean position called conceptual realism in which the concepts (unsaturated cognitive structures) that predicates stand for are distinguished from the extensions (or intensions) that their nominalizations denote as singular terms. We argue against Quine's view that predicate quantifiers can be given a referential interpretation only if the entities predicates stand for on such an interpretation are the same as the classes (assuming extensionality) that nominalized predicates denote as singular terms. Quine's alternative of giving predicate quantifiers only a substitutional interpretation is compared with a constructive version of conceptual realism, which with a logic of nominalized predicates is compared with Quine's description of conceptualism as a ramified theory of classes. We argue against Quine's implicit assumption that conceptualism cannot account for impredicative concept-formation and compare holistic conceptual realism with Quine's class Platonism.

Page Thumbnails

  • Thumbnail: Page 
[379]
    [379]
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436