Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Consistent Fragments of "Grundgesetze" and the Existence of Non-Logical Objects

Kai F. Wehmeier
Synthese
Vol. 121, No. 3 (1999), pp. 309-328
Published by: Springer
Stable URL: http://www.jstor.org/stable/20118232
Page Count: 20
  • Download ($43.95)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Consistent Fragments of "Grundgesetze" and the Existence of Non-Logical Objects
Preview not available

Abstract

In this paper, I consider two curious subsystems of Frege's "Grundgesetze der Arithmetik": Richard Heck's predicative fragment H, consisting of schema V together with predicative second-order comprehension (in a language containing a syntactical abstraction operator), and a theory $\text{T}_{\Delta}$ in monadic second-order logic, consisting of axiom V and Δ₁ⁱ-comprehension (in a language containing an abstraction function). I provide a consistency proof for the latter theory, thereby refuting a version of a conjecture by Heck. It is shown that both H and $\text{T}_{\Delta}$ prove the existence of infinitely many non-logical objects ($\text{T}_{\Delta}$ deriving, moreover, the nonexistence of the value-range concept). Some implications concerning the interpretation of Frege's proof of referentiality and the possibility of classifying any of these subsystems as logicist are discussed. Finally, I explore the relation of $\text{T}_{\Delta}$ to Cantor's theorem which is somewhat surprising.

Page Thumbnails

  • Thumbnail: Page 
[309]
    [309]
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328