If you need an accessible version of this item please contact JSTOR User Support

Models of Deduction

Kosta Dos̆en
Synthese
Vol. 148, No. 3, Proof-Theoretic Semantics (Feb., 2006), pp. 639-657
Published by: Springer
Stable URL: http://www.jstor.org/stable/20118713
Page Count: 19
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Models of Deduction
Preview not available

Abstract

In standard model theory, deductions are not the things one models. But in general proof theory, in particular in categorial proof theory, one finds models of deductions, and the purpose here is to motivate a simple example of such models. This will be a model of deductions performed within an abstract context, where we do not have any particular logical constant, but something underlying all logical constants. In this context, deductions are represented by arrows in categories involved in a general adjoint situation. To motivate the notion of adjointness, one of the central notions of category theory, and of mathematics in general, it is first considered how some features of it occur in set-theoretical axioms and in the axioms of the lambda calculus. Next, it is explained how this notion arises in the context of deduction, where it characterizes logical constants. It is shown also how the categorial point of view suggests an analysis of propositional identity. The problem of propositional identity, i.e., the problem of identity of meaning for propositions, is no doubt a philosophical problem, but the spirit of the analysis proposed here will be rather mathematical. Finally, it is considered whether models of deductions can pretend to be a semantics. This question, which as so many questions having to do with meaning brings us to that wall that blocked linguists and philosophers during the whole of the twentieth century, is merely posed. At the very end, there is the example of a geometrical model of adjunction. Without pretending that it is a semantics, it is hoped that this model may prove illuminating and useful.

Page Thumbnails

  • Thumbnail: Page 
[639]
    [639]
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657