Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Is Vegetation in Equilibrium with Climate? How to Interpret Late-Quaternary Pollen Data

Thompson Webb III
Vegetatio
Vol. 67, No. 2, Vegetation: Climate Equilibrium (Oct., 1986), pp. 75-91
Published by: Springer
Stable URL: http://www.jstor.org/stable/20146308
Page Count: 17
  • Download ($43.95)
  • Cite this Item
Is Vegetation in Equilibrium with Climate? How to Interpret Late-Quaternary Pollen Data
Preview not available

Abstract

Current methods for estimating past climatic patterns from pollen data require that the vegetation be in dynamic equilibrium with the climate. Because climate varies continuously on all time scales, judgement about equilibrium conditions must be made separately for each frequency band (i.e. time scale) of climatic change. For equilibrium conditions to exist between vegetation and climatic changes at a particular time scale, the climatic response time of the vegetation must be small compared to the time scale of climatic variation to which it is responding. The time required for vegetation to respond completely to climatic forcing at a time scale of 10⁴ yr is still unknown, but records of the vegetational response to climatic events of 500- to 1000-yr duration provide evidence for relatively short response times. Independent estimates for the possible patterns and timing of late-Quaternary climate changes suggest that much of the vegetational evidence previously interpreted as resulting from disequilibrium conditions can instead be interpreted as resulting from the individualistic response of plant taxa to the different regional patterns of temperature and precipitation change. The differences among taxa in their response to climate can lead a) to rates and direction of plant-population movements that differ among taxa and b) to fossil assemblages that differ from any modern assemblage. An example of late-Holocene vegetational change in southern Quebec illustrates how separate changes in summer and winter climates may explain the simultaneous expansion of spruce (Picea) populations southward and beech (Fagus) populations northward.

Page Thumbnails

  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91