Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Tangentially Positive Isometric Actions and Conjugate Points

Raúl M. Aguilar
Transactions of the American Mathematical Society
Vol. 359, No. 2 (Feb., 2007), pp. 789-825
Stable URL: http://www.jstor.org/stable/20161603
Page Count: 37
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Tangentially Positive Isometric Actions and Conjugate Points
Preview not available

Abstract

Let (M,g) be a complete Riemannian manifold with no conjugate points and f: $(\text{M},g)\rightarrow (\text{B},g_{\text{B}})$ a principal G-bundle, where G is a Lie group acting by isometries and B the smooth quotient with $g_{\text{B}}$ the Riemannian submersion metric. We obtain a characterization of conjugate point-free quotients $(\text{B},g_{\text{B}})$ in terms of symplectic reduction and a canonical pseudo-Riemannian metric on the tangent bundle TM, from which we then derive necessary conditions, involving G and M, for the quotient metric to be conjugate point-free, particularly for M a reducible Riemannian manifold. Let $\mu _{G}\colon TM\rightarrow \germ{G}^{\ast}$ , with $\germ{G}$ the Lie Algebra of G, be the moment map of the tangential G-action on TM and let ${\bf G}_{{\bf P}}$ be the canonical pseudo-Riemannian metric on TM defined by the symplectic form dΘ and the map F: TM → M × M, F(z) = (exp(-z),exp(z)). First we prove a theorem, stating that if ${\bf G}_{{\bf P}}$ is not positive definite on the action vector fields for the tangential action along $\mu _{G}{}^{-1}(0)$ then $(\text{B},g_{\text{B}})$ acquires conjugate points. (We proved the converse result in 2005.) Then, we characterize self-parallel vector fields on M in terms of the positivity of the ${\bf G}_{{\bf P}}$ -length of their tangential lifts along certain canonical subsets of TM. We use this to derive some necessary conditions, on G and M, for actions to be tangentially positive on relevant subsets of TM, which we then apply to isometric actions on complete conjugate point-free reducible Riemannian manifolds when one of the irreducible factors satisfies certain curvature conditions.

Page Thumbnails

  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811
  • Thumbnail: Page 
812
    812
  • Thumbnail: Page 
813
    813
  • Thumbnail: Page 
814
    814
  • Thumbnail: Page 
815
    815
  • Thumbnail: Page 
816
    816
  • Thumbnail: Page 
817
    817
  • Thumbnail: Page 
818
    818
  • Thumbnail: Page 
819
    819
  • Thumbnail: Page 
820
    820
  • Thumbnail: Page 
821
    821
  • Thumbnail: Page 
822
    822
  • Thumbnail: Page 
823
    823
  • Thumbnail: Page 
824
    824
  • Thumbnail: Page 
825
    825