Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Analogue of the Degree Conjecture over Function Fields

Mihran Papikian
Transactions of the American Mathematical Society
Vol. 359, No. 7 (Jul., 2007), pp. 3483-3503
Stable URL: http://www.jstor.org/stable/20161737
Page Count: 21
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Analogue of the Degree Conjecture over Function Fields
Preview not available

Abstract

Under a certain assumption, similar to Manin's conjecture, we prove an upper bound on the degree of modular parametrizations of elliptic curves by Drinfeld modular curves, which is the function field analogue of the conjectured bound over the rational numbers.

Page Thumbnails

  • Thumbnail: Page 
3483
    3483
  • Thumbnail: Page 
3484
    3484
  • Thumbnail: Page 
3485
    3485
  • Thumbnail: Page 
3486
    3486
  • Thumbnail: Page 
3487
    3487
  • Thumbnail: Page 
3488
    3488
  • Thumbnail: Page 
3489
    3489
  • Thumbnail: Page 
3490
    3490
  • Thumbnail: Page 
3491
    3491
  • Thumbnail: Page 
3492
    3492
  • Thumbnail: Page 
3493
    3493
  • Thumbnail: Page 
3494
    3494
  • Thumbnail: Page 
3495
    3495
  • Thumbnail: Page 
3496
    3496
  • Thumbnail: Page 
3497
    3497
  • Thumbnail: Page 
3498
    3498
  • Thumbnail: Page 
3499
    3499
  • Thumbnail: Page 
3500
    3500
  • Thumbnail: Page 
3501
    3501
  • Thumbnail: Page 
3502
    3502
  • Thumbnail: Page 
3503
    3503