Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Distance Function from the Boundary in a Minkowski Space

Graziano Crasta and Annalisa Malusa
Transactions of the American Mathematical Society
Vol. 359, No. 12 (Dec., 2007), pp. 5725-5759
Stable URL: http://www.jstor.org/stable/20161843
Page Count: 35
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Distance Function from the Boundary in a Minkowski Space
Preview not available

Abstract

Let the space ℝⁿ be endowed with a Minkowski structure M (that is, M: ℝⁿ → [0, + ∞]) is the gauge function of a compact convex set having the origin as an interior point, and with boundary of class C²), and let $d^{M}(x,y)$ be the (asymmetric) distance associated to M. Given an open domain $\Omega \subset \ ℝ^{n}$ of class C², let $d_{\Omega}(x)\coloneq \text{inf}\{d^{M}(x,y);y\in \partial \Omega \}$ be the Minkowski distance of a point x ∈ Ω from the boundary of Ω. We prove that a suitable extension of $d_{\Omega}$ to ℝⁿ (which plays the rôle of a signed Minkowski distance to ∂Ω) is of class C² in a tubular neighborhood of ∂Ω, and that $d_{\Omega}$ is of class C²[superscript two] outside the cut locus of ∂Ω (that is, the closure of the set of points of nondifferentiability of $d_{\Omega}$ in Ω). In addition, we prove that the cut locus of ∂Ω has Lebesgue measure zero, and that Ω can be decomposed, up to this set of vanishing measure, into geodesics starting from ∂Ω and going into Ω along the normal direction (with respect to the Minkowski distance). We compute explicitly the Jacobian determinant of the change of variables that associates to every point x ∈ Ω outside the cut locus the pair (p(x), $d_{\Omega}(x)$ ), where p(x) denotes the (unique) projection of x on ∂Ω, and we apply these techniques to the analysis of PDEs of Monge-Kantorovich type arising from problems in optimal transportation theory and shape optimization.

Page Thumbnails

  • Thumbnail: Page 
5725
    5725
  • Thumbnail: Page 
5726
    5726
  • Thumbnail: Page 
5727
    5727
  • Thumbnail: Page 
5728
    5728
  • Thumbnail: Page 
5729
    5729
  • Thumbnail: Page 
5730
    5730
  • Thumbnail: Page 
5731
    5731
  • Thumbnail: Page 
5732
    5732
  • Thumbnail: Page 
5733
    5733
  • Thumbnail: Page 
5734
    5734
  • Thumbnail: Page 
5735
    5735
  • Thumbnail: Page 
5736
    5736
  • Thumbnail: Page 
5737
    5737
  • Thumbnail: Page 
5738
    5738
  • Thumbnail: Page 
5739
    5739
  • Thumbnail: Page 
5740
    5740
  • Thumbnail: Page 
5741
    5741
  • Thumbnail: Page 
5742
    5742
  • Thumbnail: Page 
5743
    5743
  • Thumbnail: Page 
5744
    5744
  • Thumbnail: Page 
5745
    5745
  • Thumbnail: Page 
5746
    5746
  • Thumbnail: Page 
5747
    5747
  • Thumbnail: Page 
5748
    5748
  • Thumbnail: Page 
5749
    5749
  • Thumbnail: Page 
5750
    5750
  • Thumbnail: Page 
5751
    5751
  • Thumbnail: Page 
5752
    5752
  • Thumbnail: Page 
5753
    5753
  • Thumbnail: Page 
5754
    5754
  • Thumbnail: Page 
5755
    5755
  • Thumbnail: Page 
5756
    5756
  • Thumbnail: Page 
5757
    5757
  • Thumbnail: Page 
5758
    5758
  • Thumbnail: Page 
5759
    5759