Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Receptor Signal Output Mediated by the ETR1 N Terminus Is Primarily Subfamily I Receptor Dependent

Fang Xie, Qian Liu and Chi-Kuang Wen
Plant Physiology
Vol. 142, No. 2 (Oct., 2006), pp. 492-508
Stable URL: http://www.jstor.org/stable/20205943
Page Count: 17
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Receptor Signal Output Mediated by the ETR1 N Terminus Is Primarily Subfamily I Receptor Dependent
Preview not available

Abstract

etr1-1 is a dominant ethylene receptor gene in Arabidopsis (Arabidopsis thaliana) and confers ethylene insensitivity. The truncated etr1-1(1-349) protein is capable of repressing ethylene responses, whereas etr1(1-349) is not, lending support to a hypothesis that the dominant etr1-1(1-349) could convert wild-type receptors to an ethylene-insensitive state. Assuming that etr1-1(1-349) and etr1(1-349) would share the same signaling mechanism, we hypothesize that the etr1(1-349) protein is capable of repressing ethylene responses when not bound with ethylene. In this study, we show that both etr1(1-349) and etr1-1(1-349) are capable of receptor signal output, which is primarily dependent on subfamily I receptors. The etr1(1-349) and etr1-1(1-349) clones were individually transformed to mutants and the resulting phenotypes were scored. Each of those transgenes restored the rosette growth and flower fertility of etr1-7 ers1-2 to a similar extent. In contrast, neither etr1(1-349) nor etr1-1(1-349) was capable of signal output in etr1-7 ers1-3. The ERS1 transcript was detectable in ers1-2 but not in ers1-3, implying that ETR1 N-terminal signaling is subfamily I dependent. Loss of the subfamily II receptor genes did not perturb etr1-1(1-349)-mediated ethylene insensitivity. Possible roles of subfamily I receptors and disulfide linkages in ETR1 receptor signal output mediated through the N terminus are discussed.

Page Thumbnails

  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508