Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Eukaryotic Organisms in Proterozoic Oceans

A. H. Knoll, E. J. Javaux, D. Hewitt and P. Cohen
Philosophical Transactions: Biological Sciences
Vol. 361, No. 1470, Major Steps in Cell Evolution: Palaeontological, Molecular and Cellular Evidence of Their Timing and Global Effects (Jun. 29, 2006), pp. 1023-1038
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/20209698
Page Count: 16
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Eukaryotic Organisms in Proterozoic Oceans
Preview not available

Abstract

The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.

Page Thumbnails

  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038