Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Shorter Notes: A Short Proof of the Martingale Convergence Theorem

Charles W. Lamb
Proceedings of the American Mathematical Society
Vol. 38, No. 1 (Mar., 1973), pp. 215-217
DOI: 10.2307/2038800
Stable URL: http://www.jstor.org/stable/2038800
Page Count: 3
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Shorter Notes: A Short Proof of the Martingale Convergence Theorem
Preview not available

Abstract

The martingale convergence theorem is first proved for uniformly integrable martingales by a standard application of Doob's maximal inequality. A simple truncation argument is then given which reduces the proof of the L1-bounded martingale theorem to the uniformly integrable case. A simple method is used to prove Burkholder's martingale transform convergence theorem.

Page Thumbnails

  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217