Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Quick Proof of Harish-Chandra's Plancherel Theorem for Spherical Functions on a Semisimple Lie Group

Jonathan Rosenberg
Proceedings of the American Mathematical Society
Vol. 63, No. 1 (Mar., 1977), pp. 143-149
DOI: 10.2307/2041084
Stable URL: http://www.jstor.org/stable/2041084
Page Count: 7
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Quick Proof of Harish-Chandra's Plancherel Theorem for Spherical Functions on a Semisimple Lie Group
Preview not available

Abstract

Some lemmas of S. Helgason and R. Gangolli, originally conceived for proving an analogue of the Paley-Wiener theorem for symmetric spaces, are used to give a quick proof of Harish-Chandra's inversion formula and Plancherel theorem for bi-invariant functions on a semisimple Lie group. The method is elementary in that it does not require introduction of Harish-Chandra's "Schwartz space."

Page Thumbnails

  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149