Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Simple Maximal Quotient Rings

Robert A. Rubin
Proceedings of the American Mathematical Society
Vol. 55, No. 1 (Feb., 1976), pp. 29-32
DOI: 10.2307/2041834
Stable URL: http://www.jstor.org/stable/2041834
Page Count: 4

You can always find the topics here!

Topics: Mathematical rings, Quotients, Mathematics, Necessary conditions, Mathematical theorems
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Simple Maximal Quotient Rings
Preview not available

Abstract

In this paper we consider the question of when a ring $\Lambda$ has a simple maximal left ring of quotients. In the first section we determine two necessary conditions; viz. that $\Lambda$ be left nonsingular, and when $I$ and $J$ are nonzero ideals of $\Lambda$ with $I \cap J = 0$, then $I + J$ is not left essential in $\Lambda$. In the second section we show that these conditions are also sufficient when $\Lambda$ is of finite left Goldie dimension. In addition, for a left nonsingular ring of finite left Goldie dimension, we determine the ideal structure of the maximal left ring of quotients.

Page Thumbnails

  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32