Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Note on $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$

Xun Qian Yang
Proceedings of the American Mathematical Society
Vol. 85, No. 4 (Aug., 1982), pp. 496-498
DOI: 10.2307/2044050
Stable URL: http://www.jstor.org/stable/2044050
Page Count: 3
  • Read Online (Free)
  • Download ($30.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A Note on $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
Preview not available

Abstract

Denoting by $S(N)$ the number of natural numbers $n$ less than $N$ for which $$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$ has no solutions in positive integers, we show that $S(N) \ll N/\log^2N$.

Page Thumbnails

  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498