Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Population-Based Reversible Jump Markov Chain Monte Carlo

Ajay Jasra, David A. Stephens and Christopher C. Holmes
Biometrika
Vol. 94, No. 4 (Dec., 2007), pp. 787-807
Published by: Oxford University Press on behalf of Biometrika Trust
Stable URL: http://www.jstor.org/stable/20441418
Page Count: 21
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Population-Based Reversible Jump Markov Chain Monte Carlo
Preview not available

Abstract

We present an extension of population-based Markov chain Monte Carlo to the transdimensional case. A major challenge is that of simulating from high- and transdimensional target measures. In such cases, Markov chain Monte Carlo methods may not adequately traverse the support of the target; the simulation results will be unreliable. We develop population methods to deal with such problems, and give a result proving the uniform ergodicity of these population algorithms, under mild assumptions. This result is used to demonstrate the superiority, in terms of convergence rate, of a population transition kernel over a reversible jump sampler for a Bayesian variable selection problem. We also give an example of a population algorithm for a Bayesian multivariate mixture model with an unknown number of components. This is applied to gene expression data of 1000 data points in six dimensions and it is demonstrated that our algorithm outperforms some competing Markov chain samplers. In this example, we show how to combine the methods of parallel chains (Geyer, 1991), tempering (Geyer & Thompson, 1995), snooker algorithms (Gilks et al., 1994), constrained sampling and delayed rejection (Green & Mira, 2001).

Page Thumbnails

  • Thumbnail: Page 
[787]
    [787]
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807