Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Boolean Algebras of Projections and Scalar-Type Spectral Operators

W. Ricker
Proceedings of the American Mathematical Society
Vol. 87, No. 1 (Jan. - Apr., 1983), pp. 73-77
DOI: 10.2307/2044355
Stable URL: http://www.jstor.org/stable/2044355
Page Count: 5
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Boolean Algebras of Projections and Scalar-Type Spectral Operators
Preview not available

Abstract

It is shown that the weakly closed operator algebra generated by an equicontinuous $\sigma$-complete Boolean algebra of projections on a quasi-complete locally convex space consists entirely of scalar-type operators. This extends W. Bade's well-known theorem that the same assertion is valid for Banach spaces; however, the technique of proof here differs from his method, which extends only to metrizable spaces.

Page Thumbnails

  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77