Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods

Enrique Zuazua
SIAM Review
Vol. 47, No. 2 (Jun., 2005), pp. 197-243
Stable URL: http://www.jstor.org/stable/20453625
Page Count: 47
  • Subscribe ($19.50)
  • Cite this Item
Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods
Preview not available

Abstract

This paper surveys several topics related to the observation and control of wave propagation phenomena modeled by finite difference methods. The main focus is on the property of observability, corresponding to the question of whether the total energy of solutions can be estimated from partial measurements on a subregion of the domain or boundary. The mathematically equivalent property of controllability corresponds to the question of whether wave propagation behavior can be controlled using forcing terms on that subregion, as is often desired in engineering applications. Observability/controllability of the continuous wave equation is well understood for the scalar linear constant coefficient case that is the focus of this paper. However, when the wave equation is discretized by finite difference methods, the control for the discretized model does not necessarily yield a good approximation to the control for the original continuous problem. In other words, the classical convergence (consistency + stability) property of a numerical scheme does not suffice to guarantee its suitability for providing good approximations to the controls that might be needed in applications. Observability/controllability may be lost under numerical discretization as the mesh size tends to zero due to the existence of high-frequency spurious solutions for which the group velocity vanishes. This phenomenon is analyzed and several remedies are suggested, including filtering, Tychonoff regularization, multigrid methods, and mixed finite element methods. We also briefly discuss these issues for the heat, beam, and Schrödinger equations to illustrate that diffusive and dispersive effects may help to retain the observability/controllability properties at the discrete level. We conclude with a list of open problems and future subjects for research.

Page Thumbnails

  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227
  • Thumbnail: Page 
228
    228
  • Thumbnail: Page 
229
    229
  • Thumbnail: Page 
230
    230
  • Thumbnail: Page 
231
    231
  • Thumbnail: Page 
232
    232
  • Thumbnail: Page 
233
    233
  • Thumbnail: Page 
234
    234
  • Thumbnail: Page 
235
    235
  • Thumbnail: Page 
236
    236
  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243