Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Optimal Cut-Point and Its Corresponding Youden Index to Discriminate Individuals Using Pooled Blood Samples

Enrique F. Schisterman, Neil J. Perkins, Aiyi Liu and Howard Bondell
Epidemiology
Vol. 16, No. 1 (Jan., 2005), pp. 73-81
Stable URL: http://www.jstor.org/stable/20486002
Page Count: 9
  • More info
  • Cite this Item
Optimal Cut-Point and Its Corresponding Youden Index to Discriminate Individuals Using Pooled Blood Samples
Preview not available

Abstract

Costs can hamper the evaluation of the effectiveness of new biomarkers. Analysis of smaller numbers of pooled specimens has been shown to be a useful cost-cutting technique. The Youden index (J), a function of sensitivity (q) and specificity (p), is a commonly used measure of overall diagnostic effectiveness. More importantly, J is the maximum vertical distance or difference between the ROC curve and the diagonal or chance line; it occurs at the cut-point that optimizes the biomarker's differentiating ability when equal weight is given to sensitivity and specificity. Using the additive property of the gamma and normal distributions, we present a method to estimate the Youden index and the optimal cut-point, and extend its applications to pooled samples. We study the effect of pooling when only a fixed number of individuals are available for testing, and pooling is carried out to save on the number of assays. We measure loss of information by the change in root mean squared error of the estimates of the optimal cut-point and the Youden index, and we study the extent of this loss via a simulation study. In conclusion, pooling can result in a substantial cost reduction while preserving the effectiveness of estimators, especially when the pool size is not very large.

Page Thumbnails

  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81