Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Receiver Operating Characteristic Surfaces in the Presence of Verification Bias

Yueh-Yun Chi and Xiao-Hua Zhou
Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 57, No. 1 (2008), pp. 1-23
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/20492582
Page Count: 23
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Receiver Operating Characteristic Surfaces in the Presence of Verification Bias
Preview not available

Abstract

In diagnostic medicine, the receiver operating characteristic (ROC) surface is one of the established tools for assessing the accuracy of a diagnostic test in discriminating three disease states, and the volume under the ROC surface has served as a summary index for diagnostic accuracy. In practice, the selection for definitive disease examination may be based on initial test measurements and induces verification bias in the assessment. We propose a non-parametric likelihood-based approach to construct the empirical ROC surface in the presence of differential verification, and to estimate the volume under the ROC surface. Estimators of the standard deviation are derived by both the Fisher information and the jackknife method, and their relative accuracy is evaluated in an extensive simulation study. The methodology is further extended to incorporate discrete baseline covariates in the selection process, and to compare the accuracy of a pair of diagnostic tests. We apply the proposed method to compare the diagnostic accuracy between mini-mental state examination and clinical evaluation of dementia, in discriminating between three disease states of Alzheimer's disease.

Page Thumbnails

  • Thumbnail: Page 
[1]
    [1]
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23