Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Variance Estimation in Complex Survey Sampling for Generalized Linear Models

Sundar Natarajan, Stuart R. Lipsitz, Garrett Fitzmaurice, Charity G. Moore and Rene Gonin
Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 57, No. 1 (2008), pp. 75-87
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/20492586
Page Count: 13
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Variance Estimation in Complex Survey Sampling for Generalized Linear Models
Preview not available

Abstract

Complex survey sampling is often used to sample a fraction of a large finite population. In general, the survey is conducted so that each unit (e.g. subject) in the sample has a different probability of being selected into the sample. For generalizability of the sample to the population, both the design and the probability of being selected into the sample must be incorporated in the analysis. In this paper we focus on non-standard regression models for complex survey data. In our motivating example, which is based on data from the Medical Expenditure Panel Survey, the outcome variable is the subject's 'total health care expenditures in the year 2002'. Previous analyses of medical cost data suggest that the variance is approximately equal to the mean raised to the power of 1.5, which is a non-standard variance function. Currently, the regression parameters for this model cannot be easily estimated in standard statistical software packages. We propose a simple two-step method to obtain consistent regression parameter and variance estimates; the method proposed can be implemented within any standard sample survey package. The approach is applicable to complex sample surveys with any number of stages.

Page Thumbnails

  • Thumbnail: Page 
[75]
    [75]
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87