Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Positive Effects of Damselfish Override Negative Effects of Urchins to Prevent an Algal Habitat Switch

Andrew D. Irving and Jon D. Witman
Journal of Ecology
Vol. 97, No. 2 (Mar., 2009), pp. 337-347
Stable URL: http://www.jstor.org/stable/20528860
Page Count: 11
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Positive Effects of Damselfish Override Negative Effects of Urchins to Prevent an Algal Habitat Switch
Preview not available

Abstract

1. Understanding the factors that influence habitat persistence is a central theme in ecology, particularly for habitats created by terrestrial and aquatic primary producers that are some of the world's most extensive and ecologically important. 2. Many species have positive (e.g. farming) or negative effects (e.g. herbivory) on the abundance of primary producers, potentially causing wholesale switches in habitat structure if the net outcome of effects moves toward one extreme (e.g. over-grazing). Predicting the conditions under which such switches occur remains a key challenge for ecologists. 3. The purpose of this study was to understand how co-habiting species of opposing effect (damselfish as habitat facilitators vs. sea urchins as habitat consumers) can directly and indirectly influence the persistence of algal habitats on a tropical coast, including their potential to initiate switches among habitat types (productive 'turfs' of filamentous algae vs. 'barrens' of encrusting algae). 4. Using a series of five independent experiments, we observed that damselfish facilitated the production of algal turfs both directly, through active farming of selected species, and indirectly, by vigorously attacking and expelling invading urchins from the local area (i.e. preventing herbivory). In contrast, urchins consumed algal turf to directly maintain barrens. 5. The negative effects of urchins on algal turf were strong enough to initiate a habitat switch from turf to barrens, but this was conditional upon the absence of damselfish and the presence of a particular species of urchin. 6. Synthesis. These results build upon our understanding of the dynamics of habitat persistence by demonstrating the conditions where biological interactions of opposing direction (positive vs. negative) maintain or switch habitat types. Such knowledge is central to addressing global concerns about habitat loss and predicting the occurrence of switches to less-productive states.

Page Thumbnails

  • Thumbnail: Page 
[337]
    [337]
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347