Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Necessities and Necessary Truths: A Prolegomenon to the Use of Modal Logic in the Analysis of Intensional Notions

Volker Halbach and Philip Welch
Mind
New Series, Vol. 118, No. 469 (Jan., 2009), pp. 71-100
Published by: Oxford University Press on behalf of the Mind Association
Stable URL: http://www.jstor.org/stable/20532733
Page Count: 30
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Necessities and Necessary Truths: A Prolegomenon to the Use of Modal Logic in the Analysis of Intensional Notions
Preview not available

Abstract

In philosophical logic necessity is usually conceived as a sentential operator rather than as a predicate. An intensional sentential operator does not allow one to express quantified statements such as 'There are necessary a posteriori propositions' or 'All laws of physics are necessary' in first-order logic in a straightforward way, while they are readily formalized if necessity is formalized by a predicate. Replacing the operator conception of necessity by the predicate conception, however, causes various problems and forces one to reject many philosophical accounts involving necessity that are based on the use of operator modal logic. We argue that the expressive power of the predicate account can be restored if a truth predicate is added to the language of first-order modal logic, because the predicate 'is necessary' can then be replaced by 'is necessarily true'. We prove a result showing that this substitution is technically feasible. To this end we provide partial possible-worlds semantics for the language with a predicate of necessity and perform the reduction of necessities to necessary truths. The technique applies also to many other intensional notions that have been analysed by means of modal operators.

Page Thumbnails

  • Thumbnail: Page 
[71]
    [71]
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100