Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multiple Spatial Scale Patterns of Genetic Diversity in Riparian Populations of Ainsliaea faurieana (Asteraceae) on Yakushima Island, Japan

Yuki Mitsui, Yuji Isagi and Hiroaki Setoguchi
American Journal of Botany
Vol. 97, No. 1 (Jan., 2010), pp. 101-110
Stable URL: http://www.jstor.org/stable/20622019
Page Count: 10
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Multiple Spatial Scale Patterns of Genetic Diversity in Riparian Populations of Ainsliaea faurieana (Asteraceae) on Yakushima Island, Japan
Preview not available

Abstract

Habitat and geographical features of river systems strongly influence gene flow and spatial genetic patterning in riparian plant populations. We investigated the patterns of genetic diversity within and among populations of Ainsliaea faurieana relative to different spatial conditions (along a river, among rivers, and among regions on an island), based on nuclear and chloroplast microsatellite DNA variations. Within an individual river system, we found higher haplotype diversities in downstream populations, and in a Bayesian analysis of recent migration, we detected unidirectional gene movements from upstream to downstream, indicating water-mediated dispersal along the river. Mantel tests detected no isolation-by-distance in genetic variation, suggesting the maintenance of a metapopulation with wide-range seed dispersal by water. Moreover, the observed high level of genetic differentiation, especially in the cpDNA ( $F_{\text{ST}}=0.539$ ), indicated a metapopulation structure with frequent extinction and colonization. On a larger scale, we found high population differentiation and clear genetic structuring among regions, suggesting that gene flow was restricted by geographical features (mountains separating river systems) for relatively long periods. Our findings of genetic structures based on different spatial conditions elucidated patterns and ranges of historical and contemporary gene movement in a plant species that is persistent in extremely disturbed riparian environments.

Page Thumbnails

  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110