Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets

George Kapetanios
Journal of Business & Economic Statistics
Vol. 28, No. 3 (July 2010), pp. 397-409
Stable URL: http://www.jstor.org/stable/20750848
Page Count: 13
  • Download ($14.00)
  • Cite this Item
A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets
Preview not available

Abstract

The paradigm of a factor model is very appealing and has been used extensively in economic analyses. Underlying the factor model is the idea that a large number of economic variables can be adequately modeled by a small number of indicator variables. Throughout this extensive research activity on large dimensional factor models a major preoccupation has been the development of tools for determining the number of factors needed for modeling. This article provides an alternative method to information criteria as a tool for estimating the number of factors in large dimensional factor models. The new method is robust to considerable cross-sectional and temporal dependence. The theoretical properties of the method are explored and an extensive Monte Carlo study is undertaken. Results are favorable for the new method and suggest that it is a reasonable alternative to existing methods.

Page Thumbnails

  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409