Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Cytoskeletal dynamics and spermatogenesis

Pearl P. Y. Lie, Dolores D. Mruk, Will M. Lee and C. Yan Cheng
Philosophical Transactions: Biological Sciences
Vol. 365, No. 1546, The biology and regulation of spermatogenesis (27 May 2010), pp. 1581-1592
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/20789162
Page Count: 12
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Cytoskeletal dynamics and spermatogenesis
Preview not available

Abstract

Different cellular events occur during spermatogenesis, and these include (i) mitosis for self-renewal of spermatogonia, (ii) differentiation of type A spermatogonia into type B and commitment of type B spermatogonia to develop into preleptotene primary spermatocytes, (iii) transit of preleptotene/leptotene spermatocytes across the blood—testis barrier in coordination with germ cell cycle progression and meiosis, (iv) spermiogenesis and spermiation. These events also associate with extensive changes in cell shape and size, and germ cell movement. The cytoskeleton, which comprises actin, microtubules and intermediate filaments, is believed to function in these cellular events. However, few studies have been conducted by investigators in the past decades to unfold the role of the cytoskeleton during spermatogenesis. This review summarizes recent advances in the field relating to cytoskeletal dynamics in the testis, and highlights areas of research that require additional emphasis so that new approaches for male contraception, as well as therapeutic approaches to alleviate environmental toxicant-induced reproductive dysfunction in men, can possibly be developed.

Page Thumbnails

  • Thumbnail: Page 
1581
    1581
  • Thumbnail: Page 
1582
    1582
  • Thumbnail: Page 
1583
    1583
  • Thumbnail: Page 
1584
    1584
  • Thumbnail: Page 
1585
    1585
  • Thumbnail: Page 
1586
    1586
  • Thumbnail: Page 
1587
    1587
  • Thumbnail: Page 
1588
    1588
  • Thumbnail: Page 
1589
    1589
  • Thumbnail: Page 
1590
    1590
  • Thumbnail: Page 
1591
    1591
  • Thumbnail: Page 
1592
    1592