Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A New Construction of Symplectic Manifolds

Robert E. Gompf
Annals of Mathematics
Second Series, Vol. 142, No. 3 (Nov., 1995), pp. 527-595
Published by: Annals of Mathematics
DOI: 10.2307/2118554
Stable URL: http://www.jstor.org/stable/2118554
Page Count: 69
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A New Construction of Symplectic Manifolds
Preview not available

Abstract

In each even dimension ≥ 4, families of compact, symplectic manifolds are constructed, such that all finitely presentable groups occur as fundamental groups. For each group, these manifolds can be assumed not to be homotopy equivalent to Kahler manifolds. Other examples are constructed that are homeomorphic, but not diffeomorphic, to simply connected, Kahler surfaces. The geography of compact, symplectic 4-manifolds is studied, with a result that for any fixed fundamental group, it is possible to realize any value of the first Chern number c2 1 or the signature. Explicit results are obtained about simultaneously realizing both Chern numbers (or equivalently, the signature and Euler characteristic), for any fixed fundamental group. Various other applications are presented.

Page Thumbnails

  • Thumbnail: Page 
[527]
    [527]
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545
  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579
  • Thumbnail: Page 
580
    580
  • Thumbnail: Page 
581
    581
  • Thumbnail: Page 
582
    582
  • Thumbnail: Page 
583
    583
  • Thumbnail: Page 
584
    584
  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595