If you need an accessible version of this item please contact JSTOR User Support

Chebyshev Expansions for Modified Struve and Related Functions

Allan J. Macleod
Mathematics of Computation
Vol. 60, No. 202 (Apr., 1993), pp. 735-747
DOI: 10.2307/2153112
Stable URL: http://www.jstor.org/stable/2153112
Page Count: 13
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Chebyshev Expansions for Modified Struve and Related Functions
Preview not available

Abstract

We consider the approximation of the modified Struve functions L0 and L1, and the related functions I0 - L0 and I1 - L1, where I0, I1 are modified Bessel functions. Chebyshev expansions are derived to an accuracy of 20D for these functions. By using generalized bilinear and biquadratic maps we optimize the number of coefficients for 20D accuracy.

Page Thumbnails

  • Thumbnail: Page 
735
    735
  • Thumbnail: Page 
736
    736
  • Thumbnail: Page 
737
    737
  • Thumbnail: Page 
738
    738
  • Thumbnail: Page 
739
    739
  • Thumbnail: Page 
740
    740
  • Thumbnail: Page 
741
    741
  • Thumbnail: Page 
742
    742
  • Thumbnail: Page 
743
    743
  • Thumbnail: Page 
744
    744
  • Thumbnail: Page 
745
    745
  • Thumbnail: Page 
746
    746
  • Thumbnail: Page 
747
    747